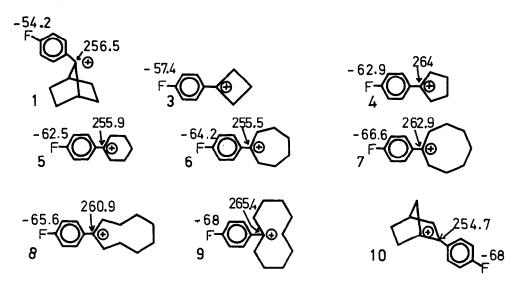

CYCLOALKYL- UND BICYCLOALKYL - CARBOKATIONEN - EINE UNTERSUCHUNG ZUM EINFLUSS DER VALENZWINKEL AM CAUF DIE STABILITÄT VON CARBENIUMIONEN¹⁾.

Heinrich Volz^x, Hans Hettel und Richard Miess Institut für Organische Chemie der Universität D-75 Karlsruhe

(Received in Germany 5 May 1975; received in UK for publication 5 June 1975)


Von den bisher von uns untersuchten p-Fluorphenyl-cycloalkyl- und bicycloalkyl-carbokationen kommt dem 7-p-Fluorphenyl-norbornylkation (1) aufgrund der 19 F-KMR-Messungen die geringste Stabilität zu. Bei p-Fluorphenyl-carbeniumionen läßt sich die Carbeniumionenstabilität die rekt mit der 19 F-chem. Verschiebung korrelieren $^{2)}$. Die Ladungsdelokalisierung in den p-Fluorphenylring ist umso geringer, je größer die Ladungsübernahme durch die beiden anderen Substituenten ist. Die Ursache für die Instabilität des 7-Norbornylkations kann die Winkelspannung $(C_1 C_7 C_4 \sim 95^0)$ und, bzw. oder, die symmetriebedingte Abwesenheit der Wechselwirkung zwischen dem leeren p-Orbital in 7-Position und dem obersten besetzten Cyclohexan-Orbital (ribbon orbital) der Cyclohexan-Boot-Struktur (2) $^{3)}$ sein.

Aus den von uns synthetisierten p-Fluorphenyl-alkoholen, 7-p-Fluorphenyl-[2. 2. 1] bicycloheptan -7-ol, 1-p-Fluorphenyl-cyclobutan-1-ol, 1-p-Fluorphenyl-cyclopentan-1-ol, 1-p-Fluorphenyl-cyclohexan-1-ol, 1-p-Fluorphenyl-cycloheptan-1-ol, 1-p-Fluorphenyl-cyclooctan-1-ol, 1-p-Fluorphenyl-cyclononan-1-ol, 1-p-Fluorphenyl-cyclodecan-1-ol und 2-p-Fluorphenyl-[2. 2. 1] bicycloheptan-2-ol wurden in FSO₃H/SO₂ClF (stets gleiches Mischungsverhältnis) bei -78°C die Kationen 1, 3, 4, 5, 6, 7, 8, 9 und 10 hergestellt⁴). Betrachtungen an Kalottenmodellen zeigen, daß in den Kationen 1, 3, 4, 5, 6, 7 und 10 der p-Fluorphenylring mit dem positiven Zentrum optimal in Wechselwirkung treten kann. Für die Kationen 8 und 9 ergibt sich eine Verdrillung um etwa 5 bis 10°.

2408 No. 29

¹⁹F-chem. Verschiebung, ppm, rel. CCl₃F (negatives Vorzeichen heißt höheres Feld als Referenzsignal) und ¹³C-chem. Verschiebung, ppm. rel. zu TMS⁵⁾:

Tab. 1. H-chem. Verschiebungen 6, ppm rel. TMS (CH₂Cl₂ als innerer Standard umgerechenet auf TMS).

ļ	aroma	at. H	Cycloalkyl - H									
Kation	Н	H _m	H ₁	H ₂	H ₃	H ₄	H ₅	H ₆	H ₇	H ₈	Н9	H ₁₀
1	9. 1	7. 93	3. 8	2. 17	2. 17	3. 8	2. 17	2. 17				
3	8. 73	7. 75	-	4.25	2.78	4. 25						
1 3 4 5 6 7 8 9	9. 0	7. 78	-	3. 98	2. 27	2. 27	3. 98					
5	9. 17	7.8	-	3.77	2.53	2, 0	2, 53	3.77				
6	8. 97	7.7	_	4. 1	2. 25	1.87	1.87	2. 25	4. 1			
7	9.05	7. 73	_	3. 92	2. 60	1. 78	1.15	1.78	2. 60	3. 92		
8		7.76	-			1. 93			1. 93	2.58	3.89	
9	8.8	7.7	-	3.88	2. 58		1.42 - 1.66				2. 58	3.88
10	8.85	7.7	- 4.83	-	3. 67	3. 25	1.7	exo 2.96 endo 2.17	2. 17			

Durch Abfangen der Kationen (1) - (10) in NaOCH₃/CH₃OH bzw. CH₃OH/Pyridin bei -78^OC konnten diese in 70-80-prozentiger Ausbeute (Kation 3, 31% Methoxyderivat) in ihre Methoxy= derivate bzw. Olefine überführt werden. Demnach ist keines der untersuchten Kationen unter den

angewandten Versuchsbedingungen eine Umlagerung eingegangen.

Da die Carbonylfrequenz von Ketonen eine Funktion des Substituentenbindungswinkels φ ist 6, haben wir die Carbonylfrequenzen der entsprechenden Ketone gegen die 19 F-chem. Verschiebungen der Carbeniumionen (1) - (10) aufgetragen, um zu prüfen, ob die Stabilität der Carbenium= ionen durch die Winkelspannung am C bestimmt wird. Dabei findet man, daß die Mehrzahl der Cycloalkylkationen, und zwar (3), (4), (5), (6), (7) und (8) im Bereich der eingezeichneten Ge= raden liegen. Die Stabilität dieser Kationen dürfte demnach weitgehend vom Ring-Valenzwinkel

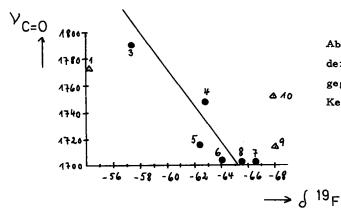


Abb. 1. ¹⁹F-chem. Verschiebungen der p-Fluorphenylcarbeniumionen gegen V C=O der entsprechenden Ketone aufgetragen.

to bestimmt werden. Eine stärkere Abweichung ergibt sich für die Kationen (1), (9) und (10). Für die Abweichung des Kations (9) könnte die Verdrillung des p-Fluorphenylrestes um $\sim 10^{\circ}$ aus der optimalen Überlappung mit dem positiven Zentrum verantwortlich sein. Eine transannulare Stabilisierung ist bei diesem tertiären Kation weniger wahrscheinlich. Da im 2-Norborznylkation (10) keine G-Beteiligung zu erwarten ist, läßt sich die Abweichung der 19 F-chem. Verschiebung nach höherem Feld durch eine günstigere Solvatations-Entropie des starreren bicyclischen Systems erklären 4 . Analog wie beim Kation (10) sollte auch beim 7-Norbornylkation (1) im Vergleich zu den monocyclischen Kationen die Solvatation begünstigt sein. Die Abweichung der 19 F-chem. Verschiebung von (1) nach niederem Feld zeigt dagegen eine Destabilisierung an, die durch die Winkelspannung (10 C 10 C 4) alleine nicht erklärt werden kann. Auch ein Vergleich der 19 F-chem. Verschiebungen des Norbornylkations (1) und des Cyclobutylkations (3) führt zum gleichen Ergebnis. Dabei darf man annehmen, daß im tertiären Cyclobutylkation (3) eine stabilisierende 1, 3-Wechselwirkung nicht vorliegt. Als zusätzlicher destabilisierender Faktor im Norbornylkation (1) bietet sich die von Hoffmann, Mollère und Heilbronner diskutierte symmetriebedingte Destabilisierung des 7-Norbornylkations an.

Im ¹H-KMR-Spektrum des Cyclobutylkations (3) finden wir eine Feinaufspaltung des Triplett-Signals der 2- und 4-Protonen des Cyclobutanringes von 2.6 Hz. Wie eine vergleichende ¹H-KMR-Untersuchung des 1-Phenyl-cyclobutylkations, in dem eine Aufspaltung des Tripletts der 2- und 4-Protonen nicht beobachtet wird, zeigt, ist die Feinaufspaltung durch die über 7 Bin= dungen hinweg erfolgende Kopplung des Fluorkernes mit den Protonen in 2- und 4-Position des Cyclobutanringes bedingt.

In Ubereinstimmung mit Untersuchungen von Brown und Takeuchi⁷⁾ an 2p-Anisyl-2-norbornyl=kationen finden wir beim Abfangen des 2-Norbornylkations (10) eine überwiegende Bildung des exo-Methoxyderivates (exo: endo = 9:1).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

- 23. Mitteilung über stabile Carbeniumionen 22. Mitt. H. Volz und R. Miess, Tetrahedron Letters, erscheint demnächst
- 2) R. W. Taft und L. D. McKeever, J. Am. Chem. Soc. <u>87</u>, 2489 (1965)
- R. Hoffmann, Ph. D. Mollere und E. Heilbronner, J. Am. Chem. Soc. 95, 4860 (1973)
- Die Kationen 4, 5 und 10 wurden ebenfalls von D. G. Farnum und D. S. Patton, J. Am. Chem. Soc. 95, 7728 (1973) hergestellt.
- 5) Die 13 C-chem. Verschiebungen des Kations 3 werden in der ausführlichen Veröffentlichung mitgeteilt.
- 6) a) J.O. Halford, J. Chem. Phys. 24, 830 (1956)
 - b) R. Zbinden und H. K. Hall, jr., J. Am. Chem. Soc. §2, 1215 (1960)
 - c) P. v. R. Schleyer und R. D. Nicholas, J. Am. Chem. Soc. 83, 182 (1961)
- 7) H. C. Brown und K. Takeuchi, J. Am. Chem. Soc. 96, 2691, 2693 (1968)